TELINDY PLUS

Feature

Batch ALD process to achieve high step coverage and high productivity

Seed technology to achieve thin film controllability

High speed robotics

Dry cleaning technology for particle reduction

31% reduction of energy consumption per wafer by decreasing L/L N₂ flow rate and by higher throughput (SEMI S23 conversion, compared to TELINDY™)

バッチ式 ALD によりカバレッジ性能の確保と高生産性を両立

シード技術による CVD 膜の 薄膜制御性の向上

高速搬送メカ

ドライクリーニング技術による 微小パーティクル制御

L/L N2流量削減、スループット向上 によりウェーハ当たりのエネルギー 消費量31%削減 (SEMI S23換算、TELINDY™比)

Applications

Oxide/Anneal/CVD/ALD 🏺

成膜装置 (酸化/アニール/CVD/ALD装置)

ALD装置

Atomic Layer Deposition System

NT333[™]

Feature

Thickness controllability at the monolayer level through sufficient gas adsorption and oxidation

High quality film deposition by taking quality improvement steps into ALD cycles

SiO₂ film deposited in low temperature regions (<400°C) has comparable HF etch resistance and leakage performance to thermal oxide

Enabling excellent film property uniformity required for high aspect ratio structures on 3D NAND devices at high temperatures (760°C) 反応ガスの十分な吸着・酸化による 原子レベルでの膜厚制御

ALDサイクル内への改質ステップ 組み込みによる高品質成膜の実現

低温域(400度以下)において 熱酸化膜同等の耐フッ酸性、 リーク特性の実現

高温域 (760 度成膜) において 3D NAND に求められる 高アスペクト内の膜質均一性を達成

Applications

Various Dielectric Films-Thermal Plasma Configuration 高品質ALD Film